
Sixth Irish Workshop on Computer Graphics (2005)

Eurographics Irish Chapter

© The Eurographics Association 2005.

Neural Pathways for Real-Time Dynamic Computer Games
R. Graham, H. McCabe, S. Sheridan

School of Informatics and Engineering, Institute of Technology at Blanchardstown, Dublin 15

Abstract

Many 3D graphics applications require the presence of autonomous computer-controlled agents which are
capable of navigating their way around a virtual 3D world. Computer games are an obvious example of this.
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is
agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. The
two main components for basic real-time pathfinding are (i) travelling towards a specified goal and (ii)
avoiding dynamic and static obstacles that may litter the path to this goal. The focus of this paper is how
machine learning techniques, such as Artificial Neural Networks and Genetic Algorithms, can be used to
enhance an AI agent’s ability to handle pathfinding in real-time by giving them an awareness of the virtual
world around them through sensors. Thus the agents should be able to react in real-time to any dynamic
changes that may occur in the game.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Navigation
algorithms

1 Introduction

Agent movement is one of the greatest challenges in the
design of realistic Artificial Intelligence (AI) in computer
games. This challenge is compounded in modern games
that are becoming more dynamic in nature as a result of
middleware engines such as Renderware [Rend] and Havok
[Havok]. These middleware companies allow game
developers to spend more time developing interesting
dynamic games because they remove the need to build
custom physics engines for each game. But these new
dynamic games create a strain on existing pathfinding
strategies as these strategies rely on a static representation
of the virtual world of the game. Therefore, since the
games environment can change in real-time, the
pathfinding strategy also has to occur in real-time. The two
components for basic real-time pathfinding are (i) heading
in the direction of a goal and (ii) avoiding any static and
dynamic obstacles that may litter the path to that goal in
real-time.

This paper will highlight the need for real-time
pathfinding and how effectively a neural network can learn
this initially at a basic level. It will then discuss a test bed
system, currently in development, that incorporates
machine learning techniques into a 3D game engine.
Finally the steps taken to determine the possibility of using
neural networks for basic real-time pathfinding and the
result of these steps will be discussed. The game engine
chosen for our test bed was the Quake 2 engine developed
by id software [Id].

1.1 The Need for Real-Time Pathfinding

Traditionally in computer games, pathfinding is done on a
static scaled down representation of the virtual world that

the game presents [Gra03]. This works fine if there is little
or no change to the virtual world throughout the course of
the game. This was the case in most games up until now as
the sophistication of the game’s real-time physics engine
was limited mainly due to the time required to develop it.
However games are now being built using middleware for
key components of the game, including the physics engine.
Middleware is software written by an external source that
has hooks that allow it to be integrated into a game
developer’s code. Therefore game developers can spend
much more time creating more immersible games with
real-time dynamic scenes. This sounds exciting however it
is being impeded by traditional pathfinding AI that operates
off a static representation of the games virtual environment.
This limits the amount of dynamic objects that can be
added to games, as the pathfinding strategy will have to be
fine-tuned to handle them thus adding more time to the
development of the game.

To allow an AI agent to effectively navigate a dynamic
world it would have to be given real-time awareness of the
environment surrounding it. To achieve this with traditional
methods would require running the pathfinding algorithm
at every move, and this would be computationally
expensive, especially for the limited memory available to
the games consoles of today. Therefore the AI agent will
have to be given some kind of sensors that can obtain
information about its surroundings. This is not difficult to
implement, however a key problem arises in making the
agent decipher useful information from these sensors and
react accordingly in real-time without putting too much of a
strain on the computers resources. Artificial neural
networks are a well known AI technique that provides a
potential solution to this problem.

R.Graham, H.McCabe & S.Sheridan / Neural Pathways for Real-Time Dynamic Computer Games

© The Eurographics Association 2005.

1.2 Neural Networks for Real-Time Pathfinding

An artificial neural network is an information-processing
system that has certain performance characteristics in
common with biological neural networks [Fau94]. Each
input into a neuron has a weight value associated with it;
these weights are the primary means of storage for neural
networks. Learning takes place by changing the value of
the weights. The key point is that a trained Neural Network
(NN) has to ability to generalise on situations that it has
never encountered [Cha04]. This is a particularly useful
feature that should help considerably with dynamic scenes.

There has been research in the robotics field with regard
to using NN’s for real-time pathfinding [Gla95,Leb03,
Leb05]. These approaches typically involve representing
the entire map with a 2D mesh of connected neurons. This
requires a pre-processing phase to set up a neural mesh
representation of a map. However, once created, the mesh
can handle dynamic changes. The problem is that it would
require too many neurons to represent a typical game
environment. This problem is compounded by the fact that
each AI agent would require its own separate neural mesh.

There are many different types of neural networks but the
one particularly suited to real-time games is the Feed
Forward Neural Network (FFNN) due to the speed it can
process data [Fau94]. Therefore it was decided to
investigate how well a FFNN could be trained to decipher
the information presented to it from sensors attached to an
AI agent in a dynamic virtual world. These sensors will
receive real-time data from the physics engine therefore
giving the agent a sense of awareness about its surrounding
environment.

FPS V Neurons

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800
Thousands

Neurons

Fr
am

es
 p

er
 s

ec
on

d

Figure 1.1

The definitive measure of success in real-time games is
the frames per second (FPS) rate. For a real-time game
frame rates below 25 - 30 FPS are generally deemed
unacceptable. As shown in figure 1.1 our system can have
well over two hundred thousand neurons active in the
Quake 2 engine at 30 FPS. This translates, depending on
how many neurons a NN is composed of, to thousands of
AI agents being able to use a trained NN at the same time.

1.3 Evolving the Weights of a Neural Network

Figure 1.2

The encoding of a neural network which is to be evolved
by a genetic algorithm is very straightforward. This is
achieved by reading all the weights from its respective
layers and storing them in an array. This weight array
represents the chromosome of the organism with each
individual weight representing a gene. During crossover,
the arrays for both parents are lined up side by side. Then
depending on the crossover method, the genetic algorithm
chooses the respective parents weights to be passed on to
the offspring as shown in figure 1.2.

Training the neural network for basic real-time
pathfinding first required it to learn to (i) head in direction
of goal and then to (ii) navigate around any obstacles that
might litter the path. Therefore the first step will be to see if
the NN can learn these two tasks separately and then finally
learn both of them combined.

2 Training

Reinforcement learning [Cha04] [Rus95] is used to
evolve the NN’s weights through a genetic algorithm (GA)
[Buc02]. This is achieved by rewarding AI agents for
following various rules that the user specifies at different
time intervals. Then the AI agents are then ranked
according to their respective scores, with the top ranking
agents putting a mixture of their weights into a lower
ranking agent. This is analogous to the evolutionary
survival of the fittest model.

2.1 Implementation

The NN and the GA were implemented in C++ and
compiled into a standalone library named the AI Library.
The AI Library gives any program linking to it access to
NN, GA and traditional pathfinding functionality through
high-level commands. Therefore to train the AI agents
within the Quake2 engine the AI Library was linked to the
engine’s source code. Once linked a number of graphical
user interfaces (GUI) were implemented that allow the user
to integrate a NN into the AI agents and evolve them
through a GA.

R.Graham, H.McCabe & S.Sheridan / Neural Pathways for Real-Time Dynamic Computer Games

© The Eurographics Association 2005.

2.1.1 GA Options GUI

The user is given real-time control over all the GA
parameters thus giving the user huge scope to dynamically
change each of them throughout a simulation. These
parameters are the selection function, the crossover
function, mutation probability, evolution time and all the
elements concerned with the rank function. This facilitates
evolution in stages of difficulty, by introducing more
elements as the AI agent learns previous ones, thus
gradually evolving to a more complex behaviour.

2.1.2 NN Options GUI

The NN options GUI allows the user real-time control
over the inputs to each AI agents NN and its activation
function. It also offers the user the facility to bias certain
inputs thus decreasing the search space for the NN initially,
and then gradually removing the bias values at later stages
of the evolution thus gradually increasing the search space.
This again facilitates evolution through different stages of
difficulty. A set of custom maps were also created to
facilitate training the AI agents to learn the basic
components of real-time pathfinding.

3 Results

The first thing that the NN was tested on was its ability to
go towards a goal. The idea here is to have an AI agent
relentlessly pursues a dynamic object around an obstacle
free space. Therefore the agent will decide which way to
move via a NN that takes the relative position of the goal as
its input. The NN has three outputs which are turn left,
move forward and turn right respectively. The output with
the strongest signal will be selected for the next move. This
was learned with ease by the AI agents by scoring them for
moving towards the goal. An interesting result however is
the variety in the solutions the GA produces. This is shown
in figure 3.1 where three AI agents x and y coordinates
were recorded as they moved from the same initial position
to the same goal.

Figure 3.1

The next test was to supply the AI agents with sensors
and insert them into a map with obstacles and evolve them
to use the sensor information to steer around obstacles.
Once again the NN had no trouble learning this behaviour

once scored on valid moves and turning in the correct
direction once the sensors detected an obstacle. This time
the inputs were the sensors and the output was the same as
before.

The next test was to see if a NN could learn to head in the
direction of a goal and avoid obstacles that may litter the
path. The AI agent also has no prior knowledge of the map
and reacts purely on what it senses in real-time. The inputs
provided to the NN were relative position to the goal and
the data received from each of the sensors. This proved to
be very difficult for the NN to learn so much so that a
complete rethink on the training procedures had to be done.
It was also evident that a NN with one hidden layer was not
capable to learning this behaviour. Another major change
that was integrated into the system was the ability to run
the simulation in discreet intervals. This meant at the end of
each interval the agents were reset to their original position
and orientation.

Figure 3.2

This spawned a series of new custom maps which we call
the bot boot camps. These maps contain sets of parallel
obstacle courses, each of which takes a single AI agent for
discreet evolution. Figure 3.2 shows an outline of one of
the custom bot boot camp maps. Each bot starts at the left
side of the map (S) and has to make its way to the goal on
the right (G). This finally produced AI agents that would
head towards a goal and avoid obstacles on the way.

Figure 3.3

R.Graham, H.McCabe & S.Sheridan / Neural Pathways for Real-Time Dynamic Computer Games

© The Eurographics Association 2005.

As shown in figure 3.3 the path the AI agent takes is not
the smoothest of paths but illustrates that the agent has
learned to head towards the goal position and avoid
obstacles on route with no prior knowledge of the map.

3.1 Conclusion

While NN’s seemed an obvious choice for our
implementation of real-time pathfinding, due to their speed
at deciphering real-time data and there ability to generalise,
they proved very difficult to train. However, the results that
have been achieved so far demonstrate that NN can learn
the basic components of real-time pathfinding. This is an
exciting prospect as it could become the base of a real-time
pathfinding Application Programming Interface (API) that
could be used by game developers for low level pathfinding
in a dynamic game map. The only element the game engine
would have to provide would be a ray casting function
which is a basic component of any physics engine.

4 Future Work

Figure 4.1

Future work will involve refining the training procedures
further so as to obtain even better results. We will also
investigate how the use of hybrid neural networks [Mas93]
might compliment our results. These would be capable of
breaking up the problem into its two components thus
reducing the search space for the full problem. Since there
will constantly be situations where a higher planning
algorithm will be needed to guide the AI agent in complex
maps, we will investigate the concept of using a trained NN
to cut down the number of waypoints required to represent
these game maps. Figure 4.1 illustrates how the simple map
requires four waypoints to represent it. Whereas by using a
trained NN with sensors the map can be represented by two
waypoints with the added benefit of being able to avoid any
obstacle that may litter the map during runtime.

References

[Buc02] Buckland, Mat. AI Techniques for Game
Programming. Premier Press, 2002..

[Cha04] Champandard, Alex J. AI Game Development.
New Riders Publishing, 2004.

[Fau94] Fausett, Laurene. Fundamentals of Neural
Network Architectures, Algorithms, and
Applications. Prentice-Hall Inc, 1994.

[Gla95] Glasius, R., Komoda, A., & Gielen, S. C. A. M.
Neural network dynamics for path planning and
obstacle avoidance, Neural Networks, vol 8, 125-
133. 1995.

[Gra03] Graham, R., McCabe, H. & Sheridan, S. (2003)
Pathfinding in Computer Games. ITB Journal
Issue Number 8, December 2003.

[Havok] Havok. Available: www.havok.com.

[Id] id.Available:
www.idsoftware.com/games/quake/quake2/.

[Leb03] Lebedev, D. V., Steil, J. J., & Ritter, H. Real-
time pathplanning in dynamic environments: A
comparison of three neural network models. In
proceedings of IEEE international conference on
systems, man, and cybernetics (pp. 3408-3413)
2003.

[Leb05] Lebedev, D. V., Steil, J. J., & Ritter, H. The
dynamic wave expansion neural model for robot
motion planning in time-varying environments.
Neural Networks, vol 18, 267-285. 2005.

[Mas93] Masters, Timothy. Practical Neural Network
Recipies in C++. Boston: Academic Press, 1993.

[Rend] Renderware. Available: www.renderware.com.

[Rus95] Russel, Stuart, and Peter Norvig. Artificial
Intelligence a Modern Approach. Prentice-Hall,
Inc, 1995.

