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Abstract 

Many 3D graphics applications require the presence of autonomous computer-controlled agents which are 
capable of navigating their way around a virtual 3D world. Computer games are an obvious example of this. 
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is 
agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. The 
two main components for basic real-time pathfinding are (i) travelling towards a specified goal and (ii) 
avoiding dynamic and static obstacles that may litter the path to this goal. The focus of this paper is how 
machine learning techniques, such as Artificial Neural Networks and Genetic Algorithms, can be used to 
enhance an AI agent’s ability to handle pathfinding in real-time by giving them an awareness of the virtual 
world around them through sensors. Thus the agents should be able to react in real-time to any dynamic 
changes that may occur in the game. 

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Navigation 
algorithms 

 

 

1 Introduction 

Agent movement is one of the greatest challenges in the 
design of realistic Artificial Intelligence (AI) in computer 
games. This challenge is compounded in modern games 
that are becoming more dynamic in nature as a result of 
middleware engines such as Renderware [Rend] and Havok 
[Havok]. These middleware companies allow game 
developers to spend more time developing interesting 
dynamic games because they remove the need to build 
custom physics engines for each game. But these new 
dynamic games create a strain on existing pathfinding 
strategies as these strategies rely on a static representation 
of the virtual world of the game. Therefore, since the 
games environment can change in real-time, the 
pathfinding strategy also has to occur in real-time. The two 
components for basic real-time pathfinding are (i) heading 
in the direction of a goal and (ii) avoiding any static and 
dynamic obstacles that may litter the path to that goal in 
real-time. 

This paper will highlight the need for real-time 
pathfinding and how effectively a neural network can learn 
this initially at a basic level. It will then discuss a test bed 
system, currently in development, that incorporates 
machine learning techniques into a 3D game engine. 
Finally the steps taken to determine the possibility of using 
neural networks for basic real-time pathfinding and the 
result of these steps will be discussed. The game engine 
chosen for our test bed was the Quake 2 engine developed 
by id software [Id]. 

1.1 The Need for Real-Time Pathfinding 

Traditionally in computer games, pathfinding is done on a 
static scaled down representation of the virtual world that 

the game presents [Gra03]. This works fine if there is little 
or no change to the virtual world throughout the course of 
the game. This was the case in most games up until now as 
the sophistication of the game’s real-time physics engine 
was limited mainly due to the time required to develop it. 
However games are now being built using middleware for 
key components of the game, including the physics engine. 
Middleware is software written by an external source that 
has hooks that allow it to be integrated into a game 
developer’s code. Therefore game developers can spend 
much more time creating more immersible games with 
real-time dynamic scenes. This sounds exciting however it 
is being impeded by traditional pathfinding AI that operates 
off a static representation of the games virtual environment. 
This limits the amount of dynamic objects that can be 
added to games, as the pathfinding strategy will have to be 
fine-tuned to handle them thus adding more time to the 
development of the game. 

To allow an AI agent to effectively navigate a dynamic 
world it would have to be given real-time awareness of the 
environment surrounding it. To achieve this with traditional 
methods would require running the pathfinding algorithm 
at every move, and this would be computationally 
expensive, especially for the limited memory available to 
the games consoles of today. Therefore the AI agent will 
have to be given some kind of sensors that can obtain 
information about its surroundings. This is not difficult to 
implement, however a key problem arises in making the 
agent decipher useful information from these sensors and 
react accordingly in real-time without putting too much of a 
strain on the computers resources. Artificial neural 
networks are a well known AI technique that provides a 
potential solution to this problem. 
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1.2 Neural Networks for Real-Time Pathfinding  

An artificial neural network is an information-processing 
system that has certain performance characteristics in 
common with biological neural networks [Fau94]. Each 
input into a neuron has a weight value associated with it; 
these weights are the primary means of storage for neural 
networks. Learning takes place by changing the value of 
the weights. The key point is that a trained Neural Network 
(NN) has to ability to generalise on situations that it has 
never encountered [Cha04]. This is a particularly useful 
feature that should help considerably with dynamic scenes. 

There has been research in the robotics field with regard 
to using NN’s for real-time pathfinding [Gla95,Leb03, 
Leb05]. These approaches typically involve representing 
the entire map with a 2D mesh of connected neurons. This 
requires a pre-processing phase to set up a neural mesh 
representation of a map. However, once created, the mesh 
can handle dynamic changes.  The problem is that it would 
require too many neurons to represent a typical game 
environment. This problem is compounded by the fact that 
each AI agent would require its own separate neural mesh.   

There are many different types of neural networks but the 
one particularly suited to real-time games is the Feed 
Forward Neural Network (FFNN) due to the speed it can 
process data [Fau94]. Therefore it was decided to 
investigate how well a FFNN could be trained to decipher 
the information presented to it from sensors attached to an 
AI agent in a dynamic virtual world. These sensors will 
receive real-time data from the physics engine therefore 
giving the agent a sense of awareness about its surrounding 
environment. 
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Figure 1.1 

The definitive measure of success in real-time games is 
the frames per second (FPS) rate. For a real-time game 
frame rates below 25 - 30 FPS are generally deemed 
unacceptable. As shown in figure 1.1 our system can have 
well over two hundred thousand neurons active in the 
Quake 2 engine at 30 FPS.  This translates, depending on 
how many neurons a NN is composed of, to thousands of 
AI agents being able to use a trained NN at the same time. 

 

1.3 Evolving the Weights of a Neural Network 

 

Figure 1.2 
 

The encoding of a neural network which is to be evolved 
by a genetic algorithm is very straightforward. This is 
achieved by reading all the weights from its respective 
layers and storing them in an array. This weight array 
represents the chromosome of the organism with each 
individual weight representing a gene. During crossover, 
the arrays for both parents are lined up side by side. Then 
depending on the crossover method, the genetic algorithm 
chooses the respective parents weights to be passed on to 
the offspring as shown in figure 1.2. 

Training the neural network for basic real-time 
pathfinding first required it to learn to (i) head in direction 
of goal and then to (ii) navigate around any obstacles that 
might litter the path. Therefore the first step will be to see if 
the NN can learn these two tasks separately and then finally 
learn both of them combined. 

2 Training 

Reinforcement learning [Cha04] [Rus95] is used to 
evolve the NN’s weights through a genetic algorithm (GA) 
[Buc02]. This is achieved by rewarding AI agents for 
following various rules that the user specifies at different 
time intervals. Then the AI agents are then ranked 
according to their respective scores, with the top ranking 
agents putting a mixture of their weights into a lower 
ranking agent. This is analogous to the evolutionary 
survival of the fittest model. 

2.1 Implementation 

The NN and the GA were implemented in C++ and 
compiled into a standalone library named the AI Library. 
The AI Library gives any program linking to it access to 
NN, GA and traditional pathfinding functionality through 
high-level commands. Therefore to train the AI agents 
within the Quake2 engine the AI Library was linked to the 
engine’s source code. Once linked a number of graphical 
user interfaces (GUI) were implemented that allow the user 
to integrate a NN into the AI agents and evolve them 
through a GA. 
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2.1.1 GA Options GUI 

The user is given real-time control over all the GA 
parameters thus giving the user huge scope to dynamically 
change each of them throughout a simulation. These 
parameters are the selection function, the crossover 
function, mutation probability, evolution time and all the 
elements concerned with the rank function. This facilitates 
evolution in stages of difficulty, by introducing more 
elements as the AI agent learns previous ones, thus 
gradually evolving to a more complex behaviour. 

2.1.2 NN Options GUI 

The NN options GUI allows the user real-time control 
over the inputs to each AI agents NN and its activation 
function. It also offers the user the facility to bias certain 
inputs thus decreasing the search space for the NN initially, 
and then gradually removing the bias values at later stages 
of the evolution thus gradually increasing the search space. 
This again facilitates evolution through different stages of 
difficulty. A set of custom maps were also created to 
facilitate training the AI agents to learn the basic 
components of real-time pathfinding. 

3 Results 

The first thing that the NN was tested on was its ability to 
go towards a goal. The idea here is to have an AI agent 
relentlessly pursues a dynamic object around an obstacle 
free space. Therefore the agent will decide which way to 
move via a NN that takes the relative position of the goal as 
its input. The NN has three outputs which are turn left, 
move forward and turn right respectively. The output with 
the strongest signal will be selected for the next move. This 
was learned with ease by the AI agents by scoring them for 
moving towards the goal. An interesting result however is 
the variety in the solutions the GA produces. This is shown 
in figure 3.1 where three AI agents x and y coordinates 
were recorded as they moved from the same initial position 
to the same goal. 

 

 

Figure 3.1 

The next test was to supply the AI agents with sensors 
and insert them into a map with obstacles and evolve them 
to use the sensor information to steer around obstacles. 
Once again the NN had no trouble learning this behaviour 

once scored on valid moves and turning in the correct 
direction once the sensors detected an obstacle. This time 
the inputs were the sensors and the output was the same as 
before. 

The next test was to see if a NN could learn to head in the 
direction of a goal and avoid obstacles that may litter the 
path. The AI agent also has no prior knowledge of the map 
and reacts purely on what it senses in real-time. The inputs 
provided to the NN were relative position to the goal and 
the data received from each of the sensors. This proved to 
be very difficult for the NN to learn so much so that a 
complete rethink on the training procedures had to be done. 
It was also evident that a NN with one hidden layer was not 
capable to learning this behaviour. Another major change 
that was integrated into the system was the ability to run 
the simulation in discreet intervals. This meant at the end of 
each interval the agents were reset to their original position 
and orientation. 

 

 

Figure 3.2 

This spawned a series of new custom maps which we call 
the bot boot camps. These maps contain sets of parallel 
obstacle courses, each of which takes a single AI agent for 
discreet evolution. Figure 3.2 shows an outline of one of 
the custom bot boot camp maps. Each bot starts at the left 
side of the map (S) and has to make its way to the goal on 
the right (G).   This finally produced AI agents that would 
head towards a goal and avoid obstacles on the way. 

 

 

Figure 3.3 
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As shown in figure 3.3 the path the AI agent takes is not 
the smoothest of paths but illustrates that the agent has 
learned to head towards the goal position and avoid 
obstacles on route with no prior knowledge of the map. 

3.1 Conclusion 

While NN’s seemed an obvious choice for our 
implementation of real-time pathfinding, due to their speed 
at deciphering real-time data and there ability to generalise, 
they proved very difficult to train. However, the results that 
have been achieved so far demonstrate that NN can learn 
the basic components of real-time pathfinding. This is an 
exciting prospect as it could become the base of a real-time 
pathfinding Application Programming Interface (API) that 
could be used by game developers for low level pathfinding 
in a dynamic game map. The only element the game engine 
would have to provide would be a ray casting function 
which is a basic component of any physics engine. 

4 Future Work 

 

 

Figure 4.1 

Future work will involve refining the training procedures 
further so as to obtain even better results. We will also 
investigate how the use of hybrid neural networks [Mas93] 
might compliment our results. These would be capable of 
breaking up the problem into its two components thus 
reducing the search space for the full problem. Since there 
will constantly be situations where a higher planning 
algorithm will be needed to guide the AI agent in complex 
maps, we will investigate the concept of using a trained NN 
to cut down the number of waypoints required to represent 
these game maps. Figure 4.1 illustrates how the simple map 
requires four waypoints to represent it. Whereas by using a 
trained NN with sensors the map can be represented by two 
waypoints with the added benefit of being able to avoid any 
obstacle that may litter the map during runtime. 
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